

8路4-20mA或0-10V转网络Modbus TCP和MQTT数据采集模块 IBFKJ188

产品特点:

- 8路模拟信号转换成标准Modbus TCP协议
- 采用12位AD转换器,测量精度优于0.1%
- 通过网络可以程控校准模块精度
- 支持TCP Server, UDP, MQTT等通讯协议
- 内置网页功能,可以通过网页查询数据
- 用户可在网页上设置模块IP地址和其他参数
- 宽电源供电范围: 8~32VDC
- 可靠性高,编程方便,易于应用
- 标准DIN35导轨安装,方便集中布线
- 低成本、小体积、模块化设计
- 外形尺寸: 106 mm x 59mm x 37mm

典型应用:

- 信号测量、监测和MQTT上报
- Modbus TCP网络,数据采集
- 智能楼宇控制、安防工程等应用系统
- TCP网络的工业自动化控制系统
- 设备运行监测,MES系统
- 传感器信号的测量
- 工业现场数据的获取与记录
- 医疗、工控产品开发
- 4-20mA 或 0-5V 信号采集

图1 IBFKJ188 模块外观图

产品概述:

IBFKJ188产品是一种物联网和工业以太网采集模块,实现了传感器与网络之间形成透明的数据交互。可以将传感器的模拟量数据转发到网络。

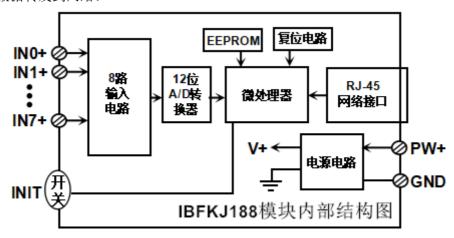


图 2 IBFKJ188 模块内部框图

ЯŦ

ShenZhen Beifu Technology Co., Ltd

IBFKJ188 系列产品包括电源调理,模拟量采集和 RJ-45 网络接口通信。通讯方式采用 MODBUS TCP 协议。 TCP 是基于传输层的协议,它是使用广泛,面向连接的可靠协议。用户可直接在网页上设置模块 IP 地址、子网 掩码等。可用来对传感器设备的运行监测与控制。

IBFKJ188 系列产品是基于单片机的智能监测和控制系统,用户设定的模块 IP 地址、子网掩码等配置信息都 储存在非易失性存储器 EEPROM 里。

IBFKJ188 系列产品按工业标准设计、制造, 抗干扰能力强, 可靠性高。工作温度范围- 45℃~+80℃。

功能简介:

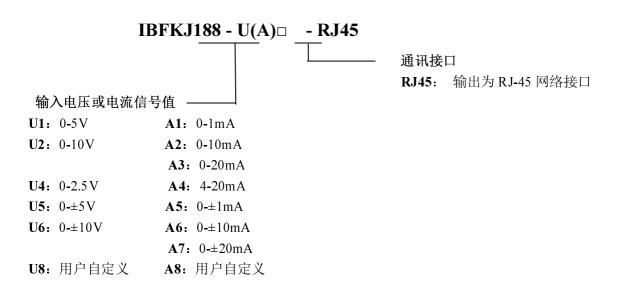
IBFKJ188 远程I/O模块,可以用来测量8路模拟信号。

1、模拟信号输入

12 位采集精度,8 路模拟信号输入。产品出厂前所有信号输入范围已全部校准。在使用时,用户也可以很方 便的自行编程校准。具体电流或电压输入量程请看产品选型。

2、通讯协议

通讯接口: RJ-45 网络接口。网口位置的两个指示灯,网线插上之后 Link 灯(绿灯)长亮, Data 灯(黄灯)。 通讯协议:采用 MODBUS TCP 协议,实现工业以太网数据交换。也可以通过 TCP socket 和模块通讯。


网络缓存: 2K Byte (收与发都是)

通信响应时间:小于 10mS。

3、抗干扰

模块内部有瞬态抑制二极管,可以有效抑制各种浪涌脉冲,保护模块。

产品型号:

选型举例 1: 型号: IBFKJ188-A4-RJ45 表示 8 路 4-20mA 信号输入,输出为 RJ-45 网络接口 选型举例 2: 型号: IBFKJ188-U1-RJ45 表示 8 路 0-5 V 信号输入,输出为 RJ-45 网络接口

IBFKJ188 通用参数:

(typical @ +25°C, Vs为24VDC)

输入类型: 电流输入 / 电压输入

精 度: 0.1%

温度漂移: ±50 ppm/°C (±100 ppm/°C, 最大)

输入电阻: 150Ω (4-20mA/0-20mA/0-±20mA电流输入)

 300Ω (0-10mA/0-±10mA电流输入) 1.5K Ω (0-1mA/0-±1mA电流输入) 大于200K(5V/10V电压输入) 大于1M Ω (2.5V以下电压输入)

带 宽: -3 dB 10 Hz

转换速率: 16Sps(出厂默认值,用户可在网页里修改转换速率。)

可以通过发送命令设置 AD 转换速率为 2SPS, 4SPS, 8SPS, 16SPS, 32SPS, 50SPS, 80SPS, 100SPS

共模抑制(CMR): 120 dB(1kΩ Source Imbalance @ 50/60 Hz)

常模抑制(NMR): 60 dB (1kΩ Source Imbalance @ 50/60 Hz)

输入端保护: 过压保护,过流保护

通 讯: MODBUS TCP通讯协议 或者 TCP socket字符协议 或者 MQTT协议

网 页: 支持网页访问模块,支持网页设置模块参数。

接 口: RJ-45网络接口。

通讯响应时间: 10 ms 最大

工作电源: +8~32VDC 宽供电范围,内部有防反接和过压保护电路

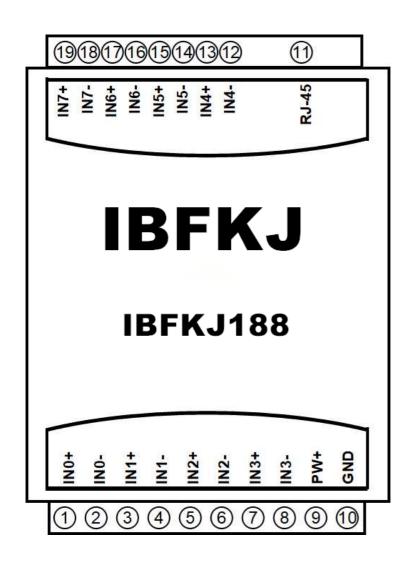
功率消耗: 小于3W

工作温度: -45~+80℃

工作湿度: 10~90%(无凝露)

存储温度: -45~+80℃

存储湿度: 10~95%(无凝露)


外形尺寸: 106 mm x 59mm x 37mm

引脚定义与接线:

引脚	名 称	描述	引脚	名 称	描述
1	IN0+	模拟信号0输入正端	11	RJ-45	RJ-45 网络接口
2	IN0-	模拟信号0输入负端	11	KJ-43	KJ-45 约绍按口
3	IN1+	模拟信号1输入正端	12	IN4-	模拟信号 4 输入负端
4	IN1-	模拟信号1输入负端	13	IN4+	模拟信号 4 输入正端
5	IN2+	模拟信号 2 输入正端	14	IN5-	模拟信号 5 输入负端
6	IN2-	模拟信号 2 输入负端	15	IN5+	模拟信号 5 输入正端
7	IN3+	模拟信号3输入正端	16	IN6-	模拟信号 6 输入负端
8	IN3-	模拟信号3输入负端	17	IN6+	模拟信号 6 输入正端
9	PW+	电源正端	18	IN7-	模拟信号7输入负端
10	GND	电源负端,信号公共地	19	IN7+	模拟信号7输入正端

注: 同名引脚内部是相连的

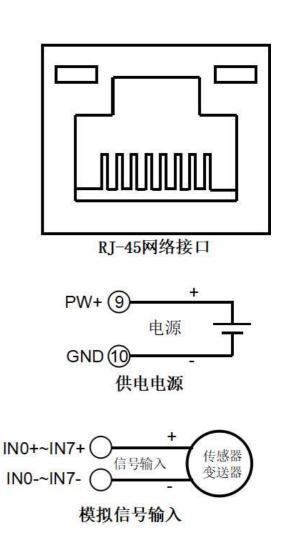
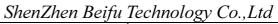


图 3 IBFKJ188 模块接线图


通过电脑配置 IBFKJ188 模块

ShenZhen Beifu Technology Co.,Ltd

⇔ ₩Ь¹Д.000		点击"配置模块参数"可设置模块
参数设置 ——————		数,如图所示
量程零点		
4.000000		
昼程満度		
20.000000		
采样速率		
16 SPS	•	
网络配置		
工作方式		
TCP Server	~	
本地IP设置		
手动设置IP	~	
MAC地址		
10:01:BF:11:29:00		
IP地址		
192.168.0.77		
默认网关		
192.168.0.1		
子网掩码		
255.255.255.0		
本地端口		
23		
快速上报		
关闭快速上报功能	~	
自动上报时间间隔(ms)		
0		
模块名称		
101BF11290		
MQTT设置		
关闭MQTT功能	~	
ac地址:10:01:BF:11:29:00; 版本:1.0		

字符通讯协议:

MQTT 协议: 连接成功后,向模块的 MQTT 订阅主题发送命令,回复的数据显示在模块的 MQTT 发布主题上。**TCP Server**,**TCP Client**,**UDP Mode**,**Web Socket** 等工作方式下:连接成功后,可以发送命令和接收数据。

1、读取数据命令

发送: #01 (如果设置了定时自动上报,就不用发送命令,模块会定时上报数据)

回复:

{"devName":"101BF11290","time":295222,"adc":[2013,2073,0,0,0,0,0,0],"actualData":[4.983146,5.0123 02,4.000000,4.000000,4.000000,4.000000,4.000000],"overRanger":[0,0,1,1,1,1,1,1]} 格式说明:

"devName" 模块名称,可以根据需要在网页上修改

"time" 模块内部时间,单位 mS。

"adc" 模块采集到的 AD 转换数据,范围 0-32767。0=零点; 32767=满度。

例如 4-20mA 输入: 0=4mA; 32767=20mA; 用户也可以直接使用换算好的工程值。

"overRanger" 0表示正常,1表示输入信号低于零点,2表示输入信号高于满度。

"actualData" 数据是由用户在网页上设置的零点和满度换算得到的值。一般应用直接使用这个值即可。

不用去处理"adc"里的数据。

也可以读单组数据:

#01>adc 回复: {"adc":[2013,2073,0,0,0,0,0,0]}

#01>actualData 回复: {"actualData":[4.983146,5.012302,4.000000,4.000000,4.000000,

4.000000,4.000000,4.000000]}

#01>overRanger 回复: {"overRanger":[0,0,1,1,1,1,1,1]}

2、设置量程

发送: \$01{"range":[0,20]}

回复: !01(cr) 表示设置成功; ?01(cr) 表示命令错误

3、读取配置命令

读取模块的配置参数,也可以在网页里直接查看。

发送: %01ReadConfig

回复:

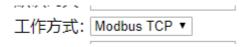
 $\{ "version": "V1.0", "rangeStart": 4.000000, "rangeEnd": 20.000000, "dataRate": 3, "setIP": 1, "mac": "10:01:BF: 11:29:00", "ip Address": "192.168.0.7", "gateway": "192.168.0.1", "netmask": "255.255.255.0", "workmode": 0, "localPort": 23, "remoteServerIp": "192.168.0.160", "remotePort": 23, "setQuickUp": 0, "sendTime": 0, "devName": "101BF11290", "setMQTT": 0, "mqttHostUr1": "broker.emqx.io", "clientId": "101BF11290", "username": "", "passwd": "", "topic": "/wayjun/pub", "port": 1883, "pubTime": 0, "subtopic": "/wayjun/sub" \}$

ShenZhen Beifu Technology Co.,Ltd

4、设置配置命令

设置模块的配置参数,也可以在网页里直接设置。可以设置全部参数或者部分参数,设置完模块会自动重启。 发送:

%01WriteConfig{"version":"V1.0","rangeStart":4.000000,"rangeEnd":20.000000,"dataRate":3,"setIP":1,"mac":"10:01: BF:11:29:00","ipAddress":"192.168.0.7","gateway":"192.168.0.1","netmask":"255.255.255.0","workmode":0,"localPort ":23,"remoteServerIp":"192.168.0.160","remotePort":23,"setQuickUp":0,"sendTime":0,"devName":"101BF11290","set MQTT":0,"mqttHostUrl":"broker.emqx.io","clientId":"101BF11290","username":"","passwd":"","topic":"/wayjun/pub", "port":1883,"pubTime":0,"subtopic":"/wayjun/sub"}


也可以只设置单个参数,例如修改 IP: %01 WriteConfig{"ipAddress":"192.168.0.7"}

回复: !01(cr) 表示设置成功; ?01(cr) 表示命令错误

Modbus TCP 协议

模块出厂默认为 1 个 Modbus TCP Server, 无需设置,直接按照 Modbus TCP 协议通讯即可。如果需要更多 Modbus TCP Server,请在配置参数里将模块的工作方式改为 Modbus TCP。最多可支持 6 个 Modbus TCP Server。

(1)、Modbus TCP 数据帧:

在 TCP/IP 以太网上传输, 支持 Ethernet II 和 802.3 两种帧格式。图 3 所示, Modbus TCP 数据帧包含报文头、 功能代码和数据3部分。

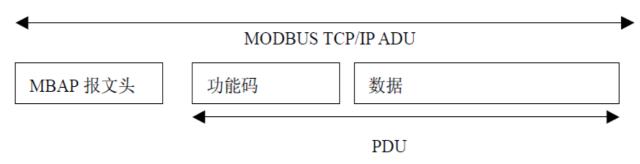


图 6: TCP/IP 上的 MODBUS 的请求/响应

(2)、MBAP报文头描述:

MBAP 报文头(MBAP、Modbus Application Protocol、Modbus 应用协议)分 4 个域,共 7 个字节,如表 1 所示。 表 1: MBAP 报文头

域	长度 (B)	描述
传输标识	2 个字节	标志某个MODBUS 询问/应答的传输
协议标志	2 个字节	0=MODBUS 协议
长度	2 个字节	后续字节计数
单元标识符	1 个字节	串行链路或其它总线上连接的远程从站的识别码

(3)、Modbus 功能代码:

Modbus 功能码分为 3 种类型,分别是:

- (1)公共功能代码: 已定义好的功能码, 保证其唯一性, 由 Modbus.org 认可;
- (2)用户自定义功能代码有两组,分别为65~72和100~110,无需认可,但不保证代码使用的唯一性。如变 为公共代码,需交RFC认可;
 - (3)保留的功能代码,由某些公司使用在某些传统设备的代码,不可作为公共用途。

在常用的公共功能代码中,支持部分的功能码,详见如下:

功能码		名称	说明
03	Read Holding Register	读保持寄存器	1表示高电平, 0表示低电平。

(4)、支持的功能码描述

03(0x03)读保持寄存器

在一个远程设备中,使用该功能码读取保持寄存器连续块的内容。请求PDU说明了起始寄存器地址和寄存器 数量。从零开始寻址寄存器。因此,寻址寄存器1-16 为0-15。在响应报文中,每个寄存器有两字节,第一个字 节为数据高位,第二个字节为数据低位。

功能码 03 举例, 读输入的模拟量, 寄存器地址 40001:

	请求		响应		
字段	名称	十六进制	字段	十六进制	
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		06			05
	单元标识符	01		单元标识符	01
功能码		03	功能码		03
起始地址 Hi		00	字节数		02
起始地址 Lo		00	寄存器值 Hi		00
寄存器编号I		00	寄存器值 Lo		00
寄存器编号L	.0	01			

IBFKJ188 的寄存器地址说明 (注: 地址都是 10 进制数)

支持功能码03的寄存器。

地址 4X (PLC)	地址 (PC, DCS)	数据内容	属性	数据说明
40001	0	IN0 输入的模拟量	只读	有符号整数,AD 转换值。
40002	1	IN1 输入的模拟量	只读	0x0000=零点; 0x7FFF=满度
40003	2	IN2 输入的模拟量	只读	例如 4-20mA:
40004	3	IN3 输入的模拟量	只读	0x0000=4mA;
40005	4	IN4 输入的模拟量	只读	0x7FFF=20mA;
40006	5	IN5 输入的模拟量	只读	
40007	6	IN6 输入的模拟量	只读	
40008	7	IN7 输入的模拟量	只读	
40009	8	IN0 是否超量程	只读	有符号整数,0表示正常,1表示输入信号
40010	9	IN1 是否超量程	只读	低于零点,2表示输入信号高于满度。
40011	10	IN2 是否超量程	只读	
40012	11	IN3 是否超量程	只读	
40013	12	IN4 是否超量程	只读	
40014	13	IN5 是否超量程	只读	
40015	14	IN6 是否超量程	只读	
40016	15	IN7 是否超量程	只读	
40017~40018	16~17	IN0 实际工程值	只读	数据为 32 位浮点数,存储顺序为 CDAB。
40019~40020	18~19	IN1 实际工程值	只读	是由用户在网页上设置的零点和满度换算
40021~40022	20~21	IN2 实际工程值	只读	得到的值。例如输入的信号是 4-20mA,代
40023~40024	22~23	IN3 实际工程值	只读	表的是温度-20~100 度,可以设置零点为
40025~40026	24~25	IN4 实际工程值	只读	-20,满度为 100,设置完成后读出来的实
40027~40028	26~27	IN5 实际工程值	只读	际工程就是实际的温度值。一般应用直接
40029~40030	28~29	IN6 实际工程值	只读	使用这个值即可。不用去处理 40001~4008
40031~40032	30~31	IN7 实际工程值	只读	寄存器里的数据。注意有的 PLC 需要高 16
				和低 16 位 SWAP 交换才能读到数据。
40033	32	IN0 实际工程值	只读	16 位有符号整数,是由用户在网页上设置
40034	33	IN1 实际工程值	只读	的零点和满度换算得到的值,使用此寄存
40035	34	IN2 实际工程值	只读	器的话注意量程不要超过-32767~32767。
40036	35	IN3 实际工程值	只读	如果需要小数,可以把量程放大适当的倍
40037	36	IN4 实际工程值	只读	数。比如 4-20mA 对应 0~100 度,可以网
40038	37	IN5 实际工程值	只读	页设置零点为 0,满度为 10000 (放大 100
40039	38	IN6 实际工程值	只读	倍),那么这个寄存器读出来的数据除以
40040	39	IN7 实际工程值	只读	100 就是实际输入的温度值。
40211	210	模块名称	只读	高位: 0x01 低位: 0x88

校准模块:

产品出厂时已经校准,用户无需校准即可直接使用。

使用过程中,你也可以运用产品的校准功能来重新校准模块。在校准时,模块需要输入合适的信号,不同的 输入范围需要不同的输入信号。

为了提高校准精度,建议使用以下设备来校准:

- 1、一个输出稳定,噪声很低的直流电压/电流信号源
- 2、一个5位半或更高精度的电压/电流测量仪表监测输入信号的准确性

校准过程

- 1. 按照模块的输入范围在需要校准的通道接上对应的输入信号。 其中IBFKJ188模块零点在输入零点信号时校准,满度在输入满度信号时校准。例如4-20mA输入时,校准 零点时输入4mA,校准满度时输入20mA.。0-5V输入时,校准零点时输入0V,校准满度时输入5V。
- 2. 给IBFKJ188模块要校准的通道输入零点信号,通常为4mA或0V。
- 3. 待信号稳定后,发送\$01{"calibrationCHx":0},(其中,x取值范围0到7,代表通道0-7)模块就会进行零点 校准。
- 4. 给IBFKJ188模块要校准的通道输入满度的电流或电压信号。
- 5. 待信号稳定后,发送**\$**01{"calibrationCHx":1},(其中,x取值范围0到7,代表通道0-7)模块就会进行满度
- 6. 校准完成

IBFKJ188 的常见问题

1, 跨网段问题

如果设备的IP与通信的PC不在一个网段内,并且是处于网线直连,或者同在一个子路由器下面,那么两者是根 本无法通信的。

举例:

设备IP: 192.168.0.7 子网掩码: 255.255.255.0 PC的IP: 192.168.1.100 子网掩码: 255.255.255.0

由于设备的IP为192.168.0.7,那么导致在PC上无法登陆设备网页,也无法ping通它。

如果您想两者能够通信,就需要把设备跟 PC 的子网掩码、还有路由器上的子网掩码都设置成 255.255.0.0,这样 就能登陆模块网页了。

2,设备能ping通但网页打不开

可能有几个原因造成:

- 1) 设备设置了静态IP与网络中的现有设备IP冲突
- 2) HTTP server port被修改(默认应该为80)
- 3) 其他原因

解决办法: 重新给设备设置一个未被使用的 IP;恢复出厂设置或者打开浏览器时输入正确的端口。

3,每隔一段时间,发生掉线重连

每隔一段时间,会发生掉线重连现象

原因: 串口服务器跟其他设备有IP地址冲突的问题

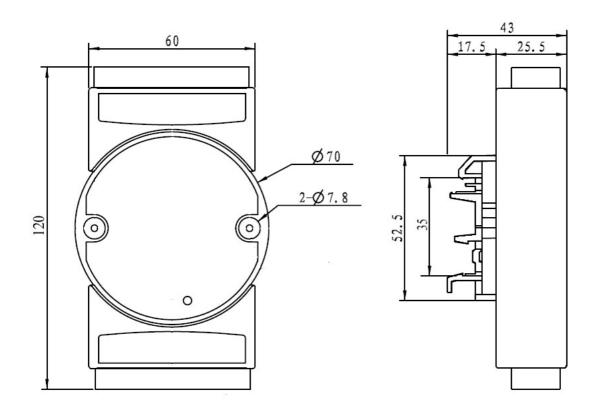
4, 通信不正常, 网络链接不上, 或者搜索不到

当前所用电脑的防火墙需要关闭(在windows防火墙设置里)

三个本地端口,不能冲突,也就是必须设置为不同值,默认23、26、29

有着非法的MAC地址,比如全FF的MAC地址,可能会出现无法连接目标IP地址的情况,或者MAC地址重复。 非法的 IP 地址,比如网段与路由器不在一个网段,可能无法访问外网。

5, 硬件问题查找


电源适配器供电不好,或者插头接触不良

电源灯不亮, 网口灯也不亮, 那就是没供电或者硬件坏了

www.szbeifu.com

外形尺寸: (单位: mm)

可以安装在标准 DIN35 导轨上

保修:

本产品自售出之日起两年内,凡用户遵守贮存、运输及使用要求,而产品质量低于技术指标的,可以返厂免 费维修。因违反操作规定和要求而造成损坏的,需交纳器件费用和维修费。

版权:

版权 © 2024 深圳市贝福科技有限公司。

如未经许可,不得复制、分发、翻译或传输本说明书的任何部分。本说明书如有修改和更新,恕不另行通知。

商标:

本说明书提及的其他商标和版权归各自的所有人所有。

版本号: V1.0 日期: 2024年6月