

10路编码器脉冲计数器或20路DI高速计数器,Modbus RTU模块 IBF168

产品特点:

- 编码器计数值和转速转Modbus RTU协议
- 支持10个编码器同时计数,可识别正反转
- 也可以设置作为20路独立DI高速计数器
- 编码器计数值支持断电自动保存
- DI输入支持PNP和NPN输入
- 继电器和机械开关输入时可以设置滤波时间
- 通过RS-485/232接口可以清零和设置计数值
- 宽电源供电范围: 8~32VDC
- 可靠性高,编程方便,易于应用
- 标准DIN35导轨安装,方便集中布线
- 用户可编程设置模块地址、波特率等
- 外形尺寸: 120 mm x 70 mm x 43 mm

典型应用:

- 编码器脉冲信号测量
- 流量计脉冲计数或流量测量
- 生产线产品计数
- 物流包裹数量计数
- 接近开关脉冲信号测量
- 编码器信号远传到工控机
- 智能工厂与工业物联网
- 替代PLC直接传数据到控制中心

图1 IBF168 模块外观图

产品概述:

IBF168产品实现传感器和主机之间的信号采集,用来解码编码器信号。IBF168系列产品可应用在 RS-232/485 总线工业自动化控制系统,自动化机床,工业机器人,三坐标定位系统,位移测量,行程测量,角度测量,转速 测量,流量测量,产品计数等等。

产品包括信号采集,脉冲信号捕捉,信号转换和RS-485串行通信。每个串口最多可接255只 IBF168系列模 块,通讯方式采用ASCII码通讯协议或MODBUS RTU通讯协议,波特率可由代码设置,能与其他厂家的控制模块 挂在同一RS-485总线上,便于计算机编程。

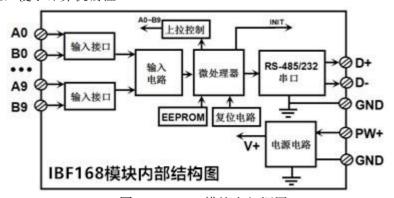


图 2 IBF168 模块内部框图

श्रन

ShenZhen Beifu Technology Co., Ltd

IBF168系列产品是基于单片机的智能监测和控制系统,所有的用户设定的地址,波特率,数据格式,校验和 状态等配置信息都储存在非易失性存储器EEPROM里。

IBF168系列产品按工业标准设计、制造,信号输入/输出之间不隔离,抗干扰能力强,可靠性高。工作温 度范围- 45°C~+85°C。

功能简介:

IBF168远程I/O模块,可以用来测量10路编码器信号,也可以设置作为20路独立计数器或者DI状态测量。

10 路编码器信号输入或 20 路独立计数器,可接干接点和湿接点,详细请参考接线图部分。

2、通讯协议

通讯接口: 1路标准的 RS-485 通讯接口或 1路标准的 RS-232 通讯接口,订货选型时注明。

通讯协议:支持两种协议,命令集定义的字符协议和 MODBUS RTU 通讯协议。模块自动识别通讯协议, 能实现与多种品牌的 PLC、RTU 或计算机监控系统进行网络通讯。

数据格式: 10位。1位起始位,8位数据位,1位停止位。无校验。

通讯地址(0~255)和波特率(2400、4800、9600、19200、38400、57600、115200bps)均可设定;通讯 网络最长距离可达 1200 米, 通过双绞屏蔽电缆连接。

通讯接口高抗干扰设计,±15KV ESD 保护,通信响应时间小于 100mS。

3、抗干扰

可根据需要设置校验和。模块内部有瞬态抑制二极管,可以有效抑制各种浪涌脉冲,保护模块,内部的数 字滤波,也可以很好的抑制来自电网的工频干扰。

产品选型:

IBF168 -通讯接口 485: 输出为 RS-485 接口 232: 输出为 RS-232 接口

选型举例 1: 型号: IBF168 - 232 表示输出为 RS-232 接口 选型举例 2: 型号: IBF168 - 485 表示输出为 RS-485 接口

IBF168 通用参数:

(typical @ +25°C, Vs为24VDC)

输入类型: 编码器 AB 信号输入, 10 通道(A0/B0~ A9/B9)。

> 低电平: 输入 <1V 高电平: 输入 3.5~30V

频率范围 0-10KHz (所有通道同时输入), 单通道可支持 50KHz 输入。

编码器计数范围 - 2147483647~+2147483647, 断电自动保存

DI 计数器范围 0~4294967295, 断电自动保存

输入电阻: 30K Ω

协议 RS-485 或 RS-232 标准字符协议 和 MODBUS RTU通讯协议 通 讯:

波特率(2400、4800、9600、19200、38400、57600、115200bps)可软件选择

地址(0~255)可软件选择

通讯响应时间: 100 ms 最大

工作电源: +8~32VDC 宽供电范围,内部有防反接和过压保护电路

功率消耗: 小于1W

工作温度: - 45 ~ +80°C

工作湿度: 10~90% (无凝露)

存储温度: - 45 ~ +80°C

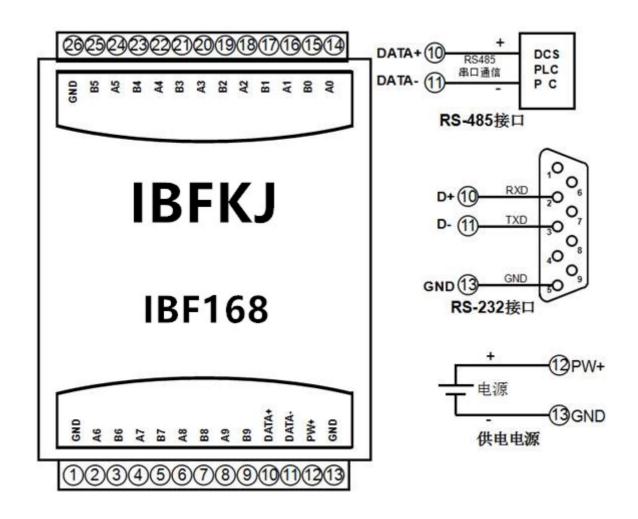
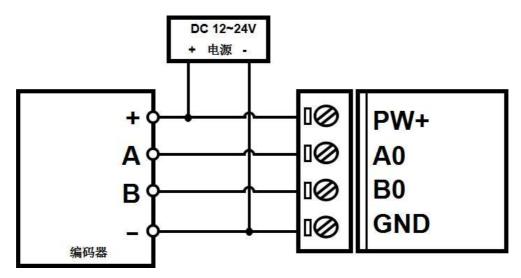
存储湿度: 10~95%(无凝露)

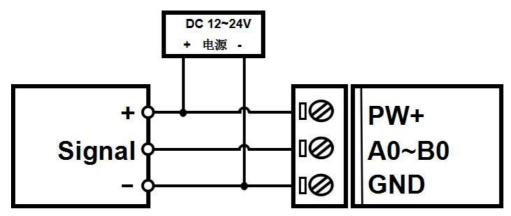
外形尺寸: 120 mm x 70 mm x 43mm

引脚定义:

引脚	名 称	描述	引脚	名 称	描述
1	GND	信号地	14	A0	编码器 0 信号 A 输入端
2	A6	编码器 6 信号 A 输入端	15	B0	编码器 0 信号 B 输入端
3	B6	编码器 6 信号 B 输入端	16	A1	编码器 1 信号 A 输入端
4	A7	编码器 7 信号 A 输入端	17	B1	编码器 1 信号 B 输入端
5	B7	编码器 7 信号 B 输入端	18	A2	编码器 2 信号 A 输入端
6	A8	编码器 8 信号 A 输入端	19	B2	编码器 2 信号 B 输入端
7	B8	编码器 8 信号 B 输入端	20	A3	编码器 3 信号 A 输入端
8	A9	编码器 9 信号 A 输入端	21	В3	编码器 3 信号 B 输入端
9	B9	编码器 9 信号 B 输入端	22	A4	编码器 4 信号 A 输入端
10	DATA+	RS-485 信号正端	23	B4	编码器 4 信号 B 输入端
11	DATA-	RS-485 信号负端	24	A5	编码器 5 信号 A 输入端
12	PW+	电源正端	25	B5	编码器 5 信号 B 输入端
13	GND	电源负端,信号地	26	GND	信号地

表 1 引脚定义


图 3 IBF168 模块接线图

编码器信号输入接线图(工作模式 0)

注: 出厂默认是关闭上拉的,如果是 NPN 型编码器,需要打开内部上拉电阻,40206 寄存器设置 为 1,或者发送字符命令\$01Q1。其他如带上拉电阻的 NPN 型编码器,PNP 型编码器,推挽式编 码器等等可以直接使用。如果要关闭内部上拉电阻,40206 寄存器设置为 0,或者发送字符命令 **\$01Q0**

DI 计数输入接线图 (工作模式 1)

注 1:出厂默认是工作模式 0,DI 计数需要发命令修改为工作模式 1,方法 1:发命令\$0131111111111, 收到回复!01 后, 关机 10 秒后生效。方法 2: 寄存器 40001~40010 修改为 1, 收到回复后, 关机 10 秒后生效。

注 2: 出厂默认是关闭上拉的,如果是 NPN 传感器、干接点或者开关输入,需要打开内部上拉电 阻,40206 寄存器设置为 1,或者发送字符命令\$01Q1。其他如带上拉电阻的 NPN 型传感器,PNP 型传感器,推挽式传感器,TTL 电平等等可以直接使用。如果要关闭内部上拉电阻,40206 寄存 器设置为 0,或者发送字符命令\$0100

IBF168 字符协议命令集:

模块的出厂初始设置,如下所示:

地址代码为01

波特率 9600 bps

无校验

如果使用 RS-485 网络,必须分配一个不重复的地址代码,地址代码取值为 16 进制数在 00 和 FF 之间,由 于新模块的地址代码都是一样的,他们的地址将会和其他模块矛盾,所以当你组建系统时,你必须重新配置每一 个 IBF168 模块地址。可以在接好 IBF168 模块电源线和 RS485 通讯线后,通过配置命令来修改 IBF168 模块的地 址。波特率, 奇偶校验也需要根据用户的要求而调整。

让模块进入缺省状态的方法:

IBF168 模块都有一个特殊的标为 INIT 的管脚。将 INIT 管脚短路接到 GND 管脚后,再接通电源,此时模块 进入缺省状态。在这个状态时,模块的配置如下:

地址代码为00

波特率 9600 bps

无校验

在不确定某个模块的具体配置时,也可以将 INIT 管脚短路接到 GND 管脚,再接通电源,使模块进入缺省 状态,再对模块进行重新配置。

字符协议命令由一系列字符组成,如首码、地址ID,变量组成。

- 注意: 1、在一些情况下,许多命令用相同的命令格式。要确保你用的地址在一个命令中是正确的,假如你用错 误的地址,而这个地址代表着另一个模块,那么命令会在另一个模块生效,因此产生错误。
 - 2、必须用大写字母输入命令。
- 1、设置编码器的工作模式
- 明:设置编码器工作模式,0或1,出厂默认为0。工作模式修改后,必须重启模块才会生效。 说
 - 工作模式 0: 编码器 AB 信号输入
 - 工作模式 1: 两路独立的计数器输入

注意:下面命令备注(工作模式 0)的表示是仅在编码器工作模式为 0 时数据才有效。 备注(工作模式1)的表示是仅在编码器工作模式为1时数据才有效。

命令格式: \$AA3BBBBBBBBBB 设置编码器的工作模式。重启后生效。

模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

应答格式:!AA(cr) 表示设置成功

参数说明: BBBBBBBBB 代表 10 个编码器通道的工作模式, 10 个数,排列顺序为编码器 9~编码器 0,

值为 0: 工作模式 0; 值为 1: 工作模式 1

应用举例: 用户命令(字符格式) \$0131111110000

模块应答(字符格式) ! 01(cr)

明:设置编码器 9~编码器 4 为工作模式 1,设置编码器 3~编码器 0 为工作模式 0

2、读取编码器的工作模式

明: 读取编码器的工作模式。

命令格式: **\$AA4** 读取编码器的工作模式。

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

应答格式: ! BBBBBBBB (cr) 代表 10 个编码器通道的工作模式, 10 个数, 排列顺序为编码器 9~编码器 0, 值为 0: 工作模式 0: 值为 1: 工作模式 1

श्रन

应用举例: 用户命令(字符格式) \$014

> 模块应答(字符格式) ! 1111110000 (cr)

明:编码器 9~编码器 4 为工作模式 1,编码器 3~编码器 0 为工作模式 0

3、读取开关状态命令

明:从模块中读回所有编码器输入通道开关量状态。

命令格式: #AA

参数说明:# 分界符。十六进制为 23H

> 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

应答格式: > BBBB,CCCCCCC,DDDDDDD (cr) 命令有效。

> 命令无效或非法操作。 ?01(cr)

参数说明:> 分界符。十六进制为 3EH

BBBB 代表读取到的编码器输入开关状态, 4个数, 排列顺序为 B9A9 B8A8,

CCCCCCC 代表读取到的编码器输入开关状态,8个数,排列顺序为B7A7B6A6B5A5B4A4,

DDDDDDDD 代表读取到的编码器输入开关状态,8个数,排列顺序为B3A3B2A2B1A1B0A0,

值为 0: 输入低电平; 值为 1: 输入高电平

结束符,上位机回车键,十六进制为0DH。

用户命令(字符格式) 应用举例: #01

> 模块应答(字符格式) >0000,00001010,00000111(cr)

明:模块输入开关状态是 0000,排列顺序为 B9A9 B8A8

A8: 低电平 B8: 低电平 A9: 低电平 B9: 低电平

模块输入开关状态是 00001010, 排列顺序为 B7A7 B6A6 B5A5 B4A4

A4: 低电平 B4: 高电平 A5: 低电平 B5: 高电平 B6: 低电平 A7: 低电平 A6: 低电平 B7: 低电平

模块输入开关状态是 00000111, 排列顺序为 B3A3 B2A2 B1A1 B0A0

A0: 高电平 B0: 高电平 A1: 高电平 B1: 低电平

A2: 低电平 B2: 低电平 A3: 低电平 B3: 低电平

4、读编码器计数器数据命令(工作模式 0)

明:读取编码器计数器的数据,可以读所有编码器,也可以读单个编码器。'+'表示正转,'-'表示反转。 命令格式: #AA2

- AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。
- 表示读编码器0~编码器9计数器数据命令。

+AAAAAAAAAA (cr)

命令格式: #AA2N 读通道 N 计数值

- 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。
- 表示读计数器数据命令。 2
- 表示读编码器N计数器数据命令。

应答格式: !+AAAAAAAA(cr)

应用举例 1: 用户命令(字符格式) #012

模块应答(字符格式) !+0012345678, +0012345678, +0012345678, +0012345678, +0012345678,

+0012345678, +0012345678, +0012345678 +0012345678, +0012345678 (cr)

明: 所有编码器的计数值为正转+12345678

应用举例 2: 用户命令(字符格式) #0120

> 模块应答(字符格式) !-0012345678(cr)

明:编码器 0 的计数值为反转-12345678。

5、修改编码器计数器的数值命令(工作模式 0)

明:修改编码器计数器的值,也可以设置为零重新计数。

修改编码器 N 的计数值, N 为编码器代号, 取值 0~9,设置 N 为'M'时 命令格式: \$AA1N+AAAAAAAAA 表示同时设置所有编码器的计数值。

模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 参数说明: AA 码。如地址01换成十六进制为30H和31H。

应答格式:!AA(cr) 表示设置成功

应用举例1: 用户命令(字符格式) \$0113+0000000000

> 模块应答(字符格式) ! **01(cr)** 明:设置编码器3的计数值为0。

应用举例 2: 用户命令(字符格式) \$011M+000000000

模块应答(字符格式) ! 01(cr)

明:设置所有编码器的计数值为0。

应用举例 3: 用户命令(字符格式) \$011M+000003000

> 模块应答(字符格式) ! 01(cr)

说 明:设置所有编码器的计数值为+3000。

6、读编码器输入频率命令(工作模式 0)

明:读取编码器输入的频率,可以读所有编码器,也可以读单编码器。'+'表示正转,'-'表示反转。 命令格式: #AA3

- 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。
- 表示读编码器0~编码器9输入频率命令。

应答格式: !+AAAAAA.AA,+AAAAAA.AA,+AAAAAA.AA,+AAAAAA.AA,

+AAAAAA.AA,+AAAAAAA.AA, +AAAAAAA.AA, +AAAAAAA.AA,+AAAAAAA.AA (cr)

读编码器N输入频率 命令格式: #**AA3N**

- AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。
- 表示读输入频率命令。 3
- 表示读编码器N输入频率命令。

应答格式: ! +AAAAAA.AA (cr)

应用举例 1: 用户命令(字符格式) #013

> 模块应答(字符格式) !+001000.00,+001000.00,+001000.00,+001000.00,+001000.00,

> > +001000.00,+001000.00, +001000.00, +001000.00,+001000.00 (cr)

明: 所有编码器的输入频率值为正转+1KHz。

用户命令(字符格式) #0130 应用举例 2:

> 模块应答(字符格式) !-001000.00(cr)

明:编码器0的输入频率值为反转-1KHz。

7、读编码器输入转速命令(工作模式 0)

明:读取编码器输入的转速,可以读所有编码器,也可以读单编码器。'+'表示正转,'-'表示反转。

命令格式: #AA4

- 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII $\mathbf{A}\mathbf{A}$ 码。如地址01换成十六进制为30H和31H。
- 表示读编码器0~编码器9输入转速命令。

应答格式: !+AAAAA,+AAAAA,+AAAAA,+AAAAA,+AAAAA,+AAAAA,+AAAAA,

+AAAAA,+AAAAA (cr)

命令格式: #AA8N 读编码器N输入转速

- AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。
- 表示读输入转速命令。
- 表示读编码器N输入转速命令。 N

应答格式: ! +AAAAA (cr)

应用举例1: 用户命令(字符格式) #014

> 模块应答(字符格式) !+01000,+01000,+01000,+01000,+01000,+01000,+01000,+01000,

> > +01000,+01000 (cr)

明: 所有编码器的输入转速值为正转+1000转。

用户命令(字符格式) #0140 应用举例 2:

> 模块应答(字符格式) !-01000(cr)

明:编码器0的输入转速值为反转-1000转。

8、设置编码器的每转脉冲数(工作模式 0)

明:设置编码器的每转脉冲数。根据接入的编码器参数来设定,出厂默认值为 1000,设置正确的脉冲数 后才可以读出编码器转速。

命令格式: \$AA5NAAAAA 设置编码器的每转脉冲数。

- 参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。
 - 设置编码器的每转脉冲数命令。
 - 编码器代号,取值0~9。

AAAAA 代表脉冲数,如1000,800或者600等。

应答格式:!AA(cr) 表示设置成功

应用举例: 用户命令(字符格式) \$015100300(cr)

> 模块应答(字符格式) ! 01(cr)

明:设置编码器1的每转脉冲数为300。

9、读取编码器的每转脉冲数(工作模式 0)

明: 读取所有编码器的每转脉冲数。

命令格式: **\$AA6** 读取所有编码器的每转脉冲数,排列顺序0~9。

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

应答格式: ! AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA (cr) 表示编码器 0~ 编码器9的每转脉冲数。

应用举例: 用户命令(字符格式) **\$016**

> 模块应答(字符格式) ! 01000, 01000, 01000, 01000, 01000, 01000, 01000, 01000, 01000,

01000 (cr)

说 明: 所有编码器的每转脉冲数都是1000。

10、读计数器数据命令(工作模式1)

明:读取计数器的数据,可以读所有通道,也可以读单通道。

命令格式: #AA5

- 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII $\mathbf{A}\mathbf{A}$ 码。如地址01换成十六进制为30H和31H。
- 表示读通道A0~通道B9计数器数据命令。排列顺序A0,B0,~~~,A9,B9。

命令格式: #AA5N

- 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII $\mathbf{A}\mathbf{A}$ 码。如地址01换成十六进制为30H和31H。
- 表示读计数器数据命令。
- Ν 表示读通道N计数器数据命令。N取值: 0123456789ABCDEFGHIJ,对应A0~B9

应答格式: !AAAAAAAA(cr)

应用举例 1: 用户命令(字符格式) #015

> 模块应答(字符格式) !0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, 0012345678, $0012345678, \quad 0012345678, \quad$ 0012345678 (cr)

明: 所有通道的计数值为 12345678。

应用举例 2: 用户命令(字符格式) #015F

> 模块应答(字符格式) !0012345678(cr)

明: 通道 B7 的计数值为 12345678。

11、修改 DI 计数器的数值命令(工作模式 1)

明:修改 DI 计数器的值,也可以设置为零重新计数。

修改计数器 N 的计数值, N 为计数器代号, 取值 0123456789ABCDEF 命令格式: \$AA2N+AAAAAAAAAA GHIJ,对应 A0~B9,设置 N为'M'时表示同时设置所有通道的计数值。

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

应答格式:!AA(cr) 表示设置成功

应用举例 1: 用户命令(字符格式) \$012F+000000000(cr)

> 模块应答(字符格式) ! 01(cr) 明:设置通道 B7 的计数值为 0。

应用举例 2: 用户命令(字符格式) \$012M+000000000(cr)

> 模块应答(字符格式) ! 01(cr) 明:设置所有通道的计数值为0。

应用举例 3: 用户命令(字符格式) \$012M+000003000(cr)

> 模块应答(字符格式) ! 01(cr)

明:设置所有通道的计数值为+3000。

12、读输入频率命令(工作模式1)

明:读取输入的频率,可以读所有通道,也可以读单通道。

命令格式: #AA6

77

ShenZhen Beifu Technology Co., Ltd

- 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII AA 码。如地址01换成十六进制为30H和31H。
- 表示读通道A0~通道B9输入频率命令。

读诵道N输入频率。 命令格式: #AA6N

- 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII AA 码。如地址01换成十六进制为30H和31H。
- 表示读输入频率命令。
- 表示读通道N输入频率命令。N取值: 0123456789ABCDEFGHIJ,对应A0~B9

应答格式:!AAAAAA.AA(cr)

应用举例 1: 用户命令(字符格式) #016

> 模块应答(字符格式) !001000.00,001000.00,001000.00,001000.00,001000.00,001000.00,00.00,001000.00,001000.00,001000.00,001000.00(cr)

明: 所有通道的输入频率值为 1KHz。

应用举例 2: 用户命令(字符格式) #016E

> 模块应答(字符格式) !001000.00(cr)

明:通道 A7 的输入频率值为 1KHz。

13、读 DI 输入转速命令(工作模式 1)

明:读取 DI 输入的转速,可以读所有 DI,也可以读单路 DI。 说

命令格式: #018 读 A0~B7 输入转速。排列顺序 A0,B0,~~~,A9,B9。

读 DI 通道 N 输入转速, N 取值: 0123456789ABCDEFGHIJ,对应 A0~B9

应答格式:!AAAAA(cr)

应用举例 1: 用户命令(字符格式) #018

> 模块应答(字符格式) ,01000,01000,01000,01000,01000,01000,01000,01000,01000 (cr)

明: 所有 DI 通道的输入转速值为 1000 转。

应用举例 2: 用户命令(字符格式) #0180

> 模块应答(字符格式) !01000(cr)

明: DI0 的输入转速值为 1000 转。

14、设置 DI 的每转脉冲数 (工作模式 1)

明:设置 DI 的每转脉冲数。根据接入 DI 的设备参数来设定,出厂默认值为 1000,设置正确的脉冲数后 说 才可以读出 DI 转速。

命令格式: \$01DWNAAAAA 设置DI通道N的每转脉冲数。N取值: 0123456789ABCDEFGHIJ,对应A0~B9, **AAAAA**代表脉冲数,如1000,800或者600等。

应答格式: ! 01(cr) 表示设置成功

用户命令(字符格式) 应用举例: \$01DW100300

> 模块应答(字符格式) ! 01(cr)

明:设置 B0 的每转脉冲数为 300。

15、读取 DI 的每转脉冲数(工作模式 1)

明: 读取所有 DI 通道的每转脉冲数。

命令格式: **\$01DR** 读取所有 DI 的每转脉冲数,排列顺序 A0.B0,~~~.A9.B9。

应答格式:! AAAAA, AAAAA

表示 A0,B0,~~~,A9,B9 的每转脉冲数。

应用举例: 用户命令(字符格式) **\$01DR**

> 模块应答(字符格式) ! 01000, 01000, 01000, 01000, 01000, 01000, 01000, 01000, 01000, 01000,

01000, 01000, 01000, 01000, 01000, 01000, 01000, 01000, 01000, 01000 (cr)

明: 所有 DI 通道的每转脉冲数都是 1000。

16、设置 DI 计数器的计数方式(工作模式 1)

说 明:设置 DI 计数器是上升沿计数还是下降沿计数。出厂设置为 00000000, 00000000。默认是上升沿计数 设置在模块重启后生效。

命令格式: **\$AA7,BBBB,CCCCCCCC,DDDDDDDD** 设置 DI 计数器的计数方式。

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

应答格式:!AA(cr) 表示设置成功

参数说明: BBBB 代表通道状态, 4个数, 排列顺序为 B9A9 B8A8,

CCCCCCC 代表通道状态, 8个数,排列顺序为B7A7B6A6B5A5B4A4,

DDDDDDDD 代表通道状态, 8 个数,排列顺序为 B3A3 B2A2 B1A1 B0A0,

值为 0: 该通道上升沿计数; 值为 1: 该通道下降沿计数

用户命令(字符格式) 应用举例: \$0171111,11110000,00001111

> 模块应答(字符格式) ! 01(cr)

明:设置 B9~A6 通道下降沿计数,设置 B5~A2 通道上升沿计数,

设置 B1~A0 通道下降沿计数。

17、读取 DI 计数器的计数方式(工作模式 1)

明:读取 DI 计数器是上升沿计数还是下降沿计数。

命令格式: **\$AA8** 读取 DI 计数器的计数方式。

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

应答格式: !BBBB,CCCCCCCC,DDDDDDD(cr) 表示 DI 计数器的计数方式。

参数说明: BBBB 代表通道状态, 4 个数, 排列顺序为 B9A9 B8A8,

CCCCCCC 代表通道状态, 8个数,排列顺序为B7A7B6A6B5A5B4A4,

DDDDDDDD 代表通道状态, 8 个数,排列顺序为 B3A3 B2A2 B1A1 B0A0,

值为 0: 该通道上升沿计数; 值为 1: 该通道下降沿计数

应用举例: 用户命令(字符格式) \$018

> 模块应答(字符格式) !1111,11110000,00001111 (cr)

明: B9~A6 通道下降沿计数, B5~A2 通道上升沿计数, B1~A0 通道下降沿计数。

18、设置 DI 的滤波时间(工作模式 1)

明:设置 DI 的滤波时间。1表示 1mS,出厂默认是 0。光电开关输入设置为 0,机械开关或者继电器输入 说 建议设置为 20~100。设置重启后生效。

श्रन

ShenZhen Beifu Technology Co., Ltd

设置DI通道N的滤波时间。N为计数器代号,取值0123456789ABCDEFGHIJ,对 命令格式: \$01LWNAAAAA 应A0~B9、设置N为'M'时表示同时设置所有通道的滤波时间。AAAAA代表滤

波时间,如0,20或者50等。

应答格式:!01(cr) 表示设置成功

用户命令(字符格式) 应用举例: \$01LW100020

> 模块应答(字符格式) ! 01(cr)

明:设置 B0 的滤波时间为 20,即 20mS。

19、读取 DI 的滤波时间(工作模式 1)

说 明:读取所有 DI 通道的滤波时间。

命令格式: \$01LR 读取所有 DI 的滤波时间,排列顺序 A0,B0,~~~,A9,B9。

应答格式:! AAAAA, AAAAA 表示 A0,B0,~~~,A9,B9 的滤波时间。

应用举例: 用户命令(字符格式)

> 模块应答(字符格式) ! 00020, 00020, 00020, 00020, 00020, 00020, 00020, 00020, 00020, 00020,

00020, 00020, 00020, 00020, 00020, 00020, 00020, 00020, 00020, 00020 (cr)

明: 所有 DI 通道的滤波时间都是 20mS。

20、设置 DI 的上拉开关

明:设置 DI 的上拉开关,出厂默认值为 0(DI 关闭上拉功能)。

命令格式: **\$010X**

参数说明: O 设置DI的上拉开关命令。

X 0: DI关闭上拉电压; 1: DI接通上拉电压。

应答格式:!01(cr) 表示设置成功

应用举例: 用户命令(字符格式) **\$01Q1**

模块应答(字符格式) ! 01(cr)

明:设置 DI 接通上拉电压。DI 是 NPN 输入时可以设置为接通 DI 上拉电压。

21、设置计数值断电是否自动保存

明:设置编码器和 DI的计数值断电是否自动保存,出厂默认值为1(断电自动保存)。

命令格式: \$AASW 设置编码器和 DI 的计数值断电是否自动保存。

参数说明: **AA** 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

设置编码器和DI的计数值断电是否自动保存命令。

W 0: 不自动保存; 1: 断电自动保存编码器和DI的计数值。

应答格式:!AA(cr) 表示设置成功

应用举例: 用户命令(字符格式) **\$01S0**

模块应答(字符格式) ! **01(cr)**

说 明:设置编码器和 DI 不保存计数值, 断电后自动清零计数。

22、配置 IBF168 模块命令

明:对一个IBF168模块设置地址,波特率,奇偶校验。配置信息储存在非易失性存储器 EEPROM 里。

命令格式: %AANNTTCCFF

参数说明:% 分界符。

- 模块地址,取值范围 00~FF(十六进制)。 $\mathbf{A}\mathbf{A}$
- NN 代表新的模块 16 进制地址,数值 NN 的范围从 00 到 FF。
- 用 16 进制代表类型编码。 IBF168 产品必须设置为 00。 TT
- **CC** 用 16 进制代表波特率编码。

波特率代码	波特率
04	2400 baud
05	4800 baud
06	9600 baud
07	19200 baud
08	38400 baud
09	57600 baud
0A	115200 baud

表 2 波特率代码

FF 用 16 进制的 8 位代表奇偶校验。

00: 无校验

10: 奇校验

20: 偶校验

应答格式: !AA(cr) 命令有效。

?AA(cr) 命令无效或非法操作,或在改变波特率或校验和前,没有安装配置跳线。

参数说明:! 分界符,表示命令有效。

分界符,表示命令无效。

AA 代表输入模块地址

(cr) 结束符,上位机回车键,十六进制为 0DH。

其他说明:假如你第一次配置模块, AA=00、 NN 等于新的地址。

假如格式错误或通讯错误或地址不存在, 模块不响应。

应用举例: 用户命令 %0011000600

> 模块应答 !11(cr)

说 明:% 分界符。

> 表示你想配置的 IBF168 模块原始地址为 00H。 00

表示新的模块 16 进制地址为 11H。

类型代码, IBF168产品必须设置为00。 00

06 表示波特率 9600 baud。

00 表示无校验。

23、读配置状态命令

明: 对指定一个 IBF168 模块读配置。

命令格式: \$AA2

参数说明:\$ 分界符。

> 模块地址,取值范围 00~FF(十六进制)。 $\mathbf{A}\mathbf{A}$

表示读配置状态命令

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式: !AATTCCFF(cr) 命令有效。

> 命令无效或非法操作。 ?AA(cr)

参数说明:! 分界符。

- 代表输入模块地址。 $\mathbf{A}\mathbf{A}$
- TT 代表类型编码。
- \mathbf{CC} 代表波特率编码。见表 2
- 表示校验 FF
- 结束符,上位机回车键,十六进制为0DH。 (cr)

其他说明:假如格式错误或通讯错误或地址不存在,模块不响应。

用户命令 应用举例: **\$012**

> 模块应答 !01000600(cr)

说 明:! 分界符。

- 表示 IBF168 模块地址为 01H 。 01
- 表示输入类型代码。 00
- 表示波特率 9600 baud。 06
- 表示无校验。 00

24、设置以上字符命令设置的所有参数恢复出厂设置。

明:设置模块用以上字符命令设置的参数恢复为出厂设置,完成后模块自动重启。

命令格式: \$AA900 设置参数恢复出厂设置。

模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 参数说明: AA 码。如地址01换成十六进制为30H和31H。

表示设置成功,模块会自动重启。 应答格式:!AA(cr)

用户命令(字符格式) 应用举例: \$01900

> 模块应答(字符格式) ! 01(cr)

明:参数恢复出厂设置。

25、重启模块命令。

明: 收到命令1秒后模块自动重启。

命令格式: %AARESTART 模块自动重启。

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为 01,转换成十六进制为每个字符的 ASCII 码。如地址 01 换成十六进制为 30H 和 31H。

应答格式:!AA(cr) 表示设置成功,模块会自动重启。

应用举例: 用户命令(字符格式) %01RESTART

> 模块应答(字符格式) !01(cr)

说明:模块重启。

Modbus RTU 通讯协议:

模块的出厂初始设置,如下所示:

Modbus 地址为 01

波特率 9600 bps

数据格式: 10位。1位起始位,8位数据位,1位停止位。无校验。

让模块进入缺省状态的方法:

IBF168 模块边上都有一个 INIT 的开关,在模块的侧面位置。将 INIT 开关拨到 INIT 位置,再接通电源,此 时模块进入缺省状态。在这个状态时,模块暂时恢复为默认的状态:地址为01,波特率为9600。在不确定某个 模块的具体配置时,用户可以查询地址和波特率的寄存器 40201-40202,得到模块的实际地址和波特率,也可以 跟据需要修改地址和波特率。

注: 正常使用时请将 INIT 开关拨到 NORMAL 位置。

支持 Modbus RTU 通讯协议,命令格式按照标准 Modbus RTU 通讯协议。

IBF168 支持的功能码,详见如下:

功能码	1	名称	说明
01	Read Coil Status	读取线圈状态	地址 0x 开始
03	Read Holding Register	读保持寄存器	地址 4x 开始
05	Write Single Coil	写单个线圈	地址 0x 开始
06	Write Single Register	写单个寄存器	地址 4x 开始
15	Write Multiple Coils	写多个线圈	地址 0x 开始
16	Write Multiple Registers	写多个寄存器	地址 4x 开始

IBF168 的寄存器地址说明

支持功能码 01,05 和 15 的寄存器

地址 0X(PLC)	地址(PC,DCS)	数据内容	属性	数据说明
00001	0	A0 的计数方式	读/写	通道 A0~B9 的计数方式
00002	1	B0 的计数方式	读/写	(默认值为0)
00003	2	A1 的计数方式	读/写	0 为上升沿计数,
00004	3	B1 的计数方式	读/写	1 为下降沿计数
00005	4	A2 的计数方式	读/写	设置在模块重启后生效。
00006	5	B2 的计数方式	读/写] 正常不用修改,使用默认值即可。
00007	6	A3 的计数方式	读/写	
00008	7	B3 的计数方式	读/写	
00009	8	A4 的计数方式	读/写	
00010	9	B4 的计数方式	读/写	
00011	10	A5 的计数方式	读/写	
00012	11	B5 的计数方式	读/写	
00013	12	A6 的计数方式	读/写	
00014	13	B6 的计数方式	读/写	
00015	14	A7 的计数方式	读/写	
00016	15	B7 的计数方式	读/写	
00017	16	A8 的计数方式	读/写	
00018	17	B8 的计数方式	读/写	
00019	18	A9 的计数方式	读/写	
00020	19	B9 的计数方式	读/写	
00033	32	A0 输入的开关量	只读	编码器输入点的电平状态
00034	33	B0 输入的开关量	只读	0表示低电平输入,
00035	34	A1 输入的开关量	只读	1表示高电平输入
00036	35	B1 输入的开关量	只读	
00037	36	A2 输入的开关量	只读	
00038	37	B2 输入的开关量	只读	
00039	38	A3 输入的开关量	只读	
00040	39	B3 输入的开关量	只读	
00041	40	A4 输入的开关量	只读	
00042	41	B4 输入的开关量	只读	
00043	42	A5 输入的开关量	只读	
00044	43	B5 输入的开关量	只读	
00045	44	A6 输入的开关量	只读	
00046	45	B6 输入的开关量	只读	
00047	46	A7 输入的开关量	只读	
00048	47	B7 输入的开关量	只读	
00049	48	A8 输入的开关量	只读	
00050	49	B8 输入的开关量	只读	
00051	50	A9 输入的开关量	只读	
00052	51	B9 输入的开关量	只读	

支持功能码 03,06 和 16 的寄存器

	06 和 16 的寄存器	ı	1	
地址 4X(PLC)	地址(PC,DCS)	数据内容	属性	数据说明
40001	0	编码器0工作模式	读/写	编码器工作模式,整数,0或1,
40002	1	编码器1工作模式	读/写	出厂默认为 0(修改后需 <mark>重启</mark> 才生效)
40003	2	编码器2工作模式	读/写	工作模式 0: 编码器 AB 信号输入
40004	3	编码器 3 工作模式	读/写	工作模式 1: 两路独立的计数器输入
40005	4	编码器 4 工作模式	读/写	下面寄存器备注(工作模式 0) 的表示
40006	5	编码器5工作模式	读/写	是仅在编码器工作模式为 0 时数据才有
40007	6	编码器6工作模式	读/写	效。备注(工作模式 1)的表示是仅在
40008	7	编码器7工作模式	读/写	编码器工作模式为1时数据才有效。
40009	8	编码器 8 工作模式	读/写	
40010	9	编码器9工作模式	读/写	
40011~40012	10~11	编码器 0 脉冲计数	读/写	编码器 0~9 脉冲计数器 (工作模式 0)
40013~40014	12~13	编码器 1 脉冲计数	读/写	数据为有符号的长整数,
40015~40016	14~15	编码器 2 脉冲计数	读/写	存储顺序为 CDAB。16 进制格式,负数
40017~40018	16~17	编码器 3 脉冲计数	读/写	采用的是补码(two's complement),
40019~40020	18~19	编码器 4 脉冲计数	读/写	正数(0x00000000~0x7FFFFFFF),
40021~40022	20~21	编码器 5 脉冲计数	读/写	负数(0xFFFFFFFF-0x80000001),
40023~40024	22~23	编码器 6 脉冲计数	读/写	计数器清零直接向对应寄存器写入0,
40025~40026	24~25	编码器7脉冲计数	读/写	也可以根据需要写入其他值。
40027~40028	26~27	编码器8脉冲计数	读/写	
40029~40030	28~29	编码器9脉冲计数	读/写	
40031	30	编码器 0 的频率	只读	编码器的脉冲频率(工 作模式 0)
40032	31	编码器1的频率	只读	有符号整数,正负表示正反转。
40033	32	编码器 2 的频率	只读	如果需要读 32 位浮点数请读寄存器
40034	33	编码器3的频率	只读	40051~40070。
40035	34	编码器 4 的频率	只读	
40036	35	编码器 5 的频率	只读	
40037	36	编码器6的频率	只读	
40038	37	编码器7的频率	只读	
40039	38	编码器 8 的频率	只读	
40040	39	编码器9的频率	只读	
10010		And to 4 days 1	710	

		Sne	enzhen	beiju technology Co.,Lia	
地址 4X(PLC)	地址 (PC, DCS)	数据内容	属性	数据说明	
40041	40	编码器 0 的转速	只读	编码器的转速(工作模式 0)	
40042	41	编码器1的转速	只读	有符号整数,正负表示正反转。	
40043	42	编码器 2 的转速	只读	转速是根据寄存器 40071~40080 设定的	
40044	43	编码器3的转速	只读	每转脉冲数换算得到。	
40045	44	编码器 4 的转速	只读		
40046	45	编码器 5 的转速	只读		
40047	46	编码器6的转速	只读		
40048	47	编码器7的转速	只读		
40049	48	编码器8的转速	只读		
40050	49	编码器9的转速	只读		
40051~40052	50~51	编码器0的频率	只读	编码器的脉冲频率(工作模式 0)	
40053~40054	52~53	编码器1的频率	只读	数据为32位浮点数,	
40055~40056	54~55	编码器 2 的频率	只读	存储顺序为 CDAB。	
40057~40058	56~57	编码器3的频率	只读	如果设备读不了浮点数可以读寄存器	
40059~40060	58~59	编码器 4 的频率	只读	40031~40040	
40061~40062	60~61	编码器 5 的频率	只读		
40063~40064	62~63	编码器6的频率	只读		
40065~40066	56~57	编码器7的频率	只读		
40067~40068	58~59	编码器6的频率	只读		
40069~40070	60~61	编码器7的频率	只读		
		WA 6 4 HR 1 H 4 2 2 4 1	7,100		
40071	70	编码器0每转脉冲数	读/写	 编码器的每转脉冲数(工 作模式 0)	
40072	71	编码器 1 每转脉冲数	读/写	无符号整数(出厂默认值为1000),根	
40073	72	编码器 2 每转脉冲数	读/写	据编码器每转脉冲数来设定,设置后寄	
40074	73	编码器3每转脉冲数	读/写	存器 40041~40050 就是对应通道转速。	
40075	74	编码器 4 每转脉冲数	读/写	, , , , , , , , , , , , , , , ,	
40076	75	编码器5每转脉冲数	读/写		
40077	76	编码器 6 每转脉冲数	读/写		
40078	77	编码器7每转脉冲数	读/写		
40079	78	编码器 8 每转脉冲数	读/写		
40080	79	编码器 9 每转脉冲数	读/写		
10000	, ,	4444113X	W, 3		

	Snenznen beijt			beiju technology Co.,Lia
地址 4X(PLC)	地址 (PC, DCS)	数据内容	属性	数据说明
40081~40082	80~81	通道 A0 脉冲计数	读/写	通道 A0~B9 脉冲计数器(工作模式 1)
40083~40084	82~83	通道 B0 脉冲计数	读/写	数据为无符号的长整数,
40085~40086	84~85	通道 A1 脉冲计数	读/写	存储顺序为 CDAB。16 进制格式,
40087~40088	86~87	通道 B1 脉冲计数	读/写	(0x00000000~0xFFFFFFF),计数器
40089~40090	88~89	通道 A2 脉冲计数	读/写	清零直接向对应寄存器写入 0, 也可以
40091~40092	90~91	通道 B2 脉冲计数	读/写	根据需要写入其他值。
40093~40094	92~93	通道 A3 脉冲计数	读/写	
40095~40096	94~95	通道 B3 脉冲计数	读/写	
40097~40098	96~97	通道 A4 脉冲计数	读/写	
40099~40100	98~99	通道 B4 脉冲计数	读/写	
40101~40102	100~101	通道 A5 脉冲计数	读/写	
40103~40104	102~103	通道 B5 脉冲计数	读/写	
40105~40106	104~105	通道 A6 脉冲计数	读/写	
40107~40108	106~107	通道 B6 脉冲计数	读/写	
40109~40110	108~109	通道 A7 脉冲计数	读/写	
40111~40112	110~111	通道 B7 脉冲计数	读/写	
40113~40114	112~113	通道 A8 脉冲计数	读/写	
40115~40116	114~115	通道 B8 脉冲计数	读/写	
40117~40118	116~117	通道 A9 脉冲计数	读/写	
40119~40120	118~119	通道 B9 脉冲计数	读/写	
40121	120	通道 A0 的频率	只读	通道 A0~B9 的脉冲频率(工作模式 1)
40122	121	通道 B0 的频率	只读	数据为16位无符号整数,
40123	122	通道 A1 的频率	只读	如果需要读 32 位浮点数请读寄存器
40124	123	通道 B1 的频率	只读	40161~40200。
40125	124	通道 A2 的频率	只读	
40126	125	通道 B2 的频率	只读	
40127	126	通道 A3 的频率	只读	
40128	127	通道 B3 的频率	只读	
40129	128	通道 A4 的频率	只读	
40130	129	通道 B4 的频率	只读	
40131	130	通道 A5 的频率	只读	
40132	131	通道 B5 的频率	只读	
40133	132	通道 A6 的频率	只读	
40134	133	通道 B6 的频率	只读	
40135	134	通道 A7 的频率	只读	
40136	135	通道 B7 的频率	只读	
40137	136	通道 A8 的频率	只读	
40138	137	通道 B8 的频率	只读	
40139	138	通道 A9 的频率	只读	
40140	139	通道 B9 的频率	只读	
				·····

				Deiju Technology Co.,Liu
地址 4X(PLC)	地址(PC,DCS)	数据内容	属性	数据说明
40141	140	通道 A0 的转速	只读	通道 A0~B9 的转速(工作模式 1)
40142	141	通道 B0 的转速	只读	有符号整数,正负表示正反转。
40143	142	通道 A1 的转速	只读	转速是根据寄存器 40221~40240 设定的
40144	143	通道 B1 的转速	只读	每转脉冲数换算得到。
40145	144	通道 A2 的转速	只读	
40146	145	通道 B2 的转速	只读	
40147	146	通道 A3 的转速	只读	
40148	147	通道 B3 的转速	只读	
40149	148	通道 A4 的转速	只读	
40150	149	通道 B4 的转速	只读	
40151	150	通道 A5 的转速	只读	
40152	151	通道 B5 的转速	只读	
40153	152	通道 A6 的转速	只读	
40154	153	通道 B6 的转速	只读	
40155	154	通道 A7 的转速	只读	
40156	155	通道 B7 的转速	只读	
40157	156	通道 A8 的转速	只读	
40158	157	通道 B8 的转速	只读	
40159	158	通道 A9 的转速	只读	
40160	159	通道 B9 的转速	只读	
40161~40162	160~161	通道 A0 的频率	只读	通道的脉冲频率(工作模式1)
40163~40164	162~163	通道 B0 的频率	只读	数据为32位浮点数,
40165~40166	164~165	通道 A1 的频率	只读	存储顺序为 CDAB。
40167~40168	166~167	通道 B1 的频率	只读	如果设备读不了浮点数可以读寄存器
40169~40170	168~169	通道 A2 的频率	只读	40121~40140
40171~40172	170~171	通道 B2 的频率	只读	
40173~40174	172~173	通道 A3 的频率	只读	
40175~40176	174~175	通道 B3 的频率	只读	
40177~40178	176~177	通道 A4 的频率	只读	
40179~40180	178~179	通道 B4 的频率	只读	
40181~40182	180~181	通道 A5 的频率	只读	
40183~40184	182~183	通道 B5 的频率	只读	1
40185~40186	184~185	通道 A6 的频率	只读	1
40187~40188	186~187	通道 B6 的频率	只读	1
40189~40190	188~189	通道 A7 的频率	只读	1
40191~40192	190~191	通道 B7 的频率	只读	1
40193~40194	192~193	通道 A8 的频率	只读	†
40195~40196	194~195	通道 B8 的频率	只读	1
40197~40198	196~197	通道 A9 的频率	只读	1
40199~40200	198~199	通道 B9 的频率	只读	1
			7100	

		Sn	enznen	Beifu Iechnology Co.,Ltd		
地址 4X(PLC)	地址 (PC, DCS)	数据内容	属性	数据说明		
40201	200	模块地址	读/写	整数,重启后生效,范围 0x0000-0x00FF		
40202	201	波特率	读/写	整数,重启后生效,范围 0x0004-0x000A		
		0017		0x0004 = 2400 bps,		
				0x0005 = 4800 bps,		
				0x00005 - 4000 bps, $0x00006 = 9600 bps$,		
				_		
				0x0007 = 19200 bps,		
				0x0008 = 38400 bps,		
				0x0009 = 57600 bps,		
				0x000A = 115200bps,		
40203	202	奇偶校验	读/写	整数,重启后生效		
				0: 无校验		
				1: 奇校验		
				2: 偶校验		
40205	204	计数值自动保存	读/写	0: 不自动保存,断电清零;		
				1: 断电自动保存计数值。(默认值为1)		
40206	205	DI 的上拉电阻开关	读/写	0: DI关闭上拉电压; (默认值为0)		
				1: DI 接通上拉电压。		
			1			
			1			
			1			
			1			
			1			
			1			
			1			
			<u></u>			
			1			

地址 4X(PLC)	地址 (PC, DCS)	数据协会		<i>y</i>		
地址 4X(PLC) 40207	型址 (PC, DCS) 206	数据内容 计数清零寄存器	属 写	数据说明 无符号整数,默认为 0,修改这个寄存器用于清零编码器计数数值为 0。写入 10:设置编码器 0 计数值为 0,写入 11:设置编码器 1 计数值为 0,写入 12:设置编码器 2 计数值为 0,写入 13:设置编码器 3 计数值为 0,写入 15:设置编码器 5 计数值为 0,写入 16:设置编码器 5 计数值为 0,写入 16:设置编码器 6 计数值为 0,写入 16:设置编码器 7 计数值为 0,写入 17:设置编码器 8 计数值为 0,写入 18:设置编码器 8 计数值为 0,写入 19:设置编码器 9 计数值为 0,写入 20:设置通道 A0 计数值为 0,写入 30:设置通道 A0 计数值为 0,写入 31:设置通道 A2 计数值为 0,写入 33:设置通道 A2 计数值为 0,写入 33:设置通道 A2 计数值为 0,写入 35:设置通道 A2 计数值为 0,写入 36:设置通道 A3 计数值为 0,写入 37:设置通道 A4 计数值为 0,写入 38:设置通道 A4 计数值为 0,写入 38:设置通道 A4 计数值为 0,写入 38:设置通道 A5 计数值为 0,写入 30:设置通道 A6 计数值为 0,写入 41:设置通道 A6 计数值为 0,写入 41:设置通道 A7 计数值为 0,写入 42:设置通道 A7 计数值为 0,写入 44:设置通道 B7 计数值为 0,写入 45:设置通道 B7 计数值为 0,写入 46:设置通道 B8 计数值为 0,写入 46:设置通道 B8 计数值为 0,写入 46:设置通道 B8 计数值为 0,写入 46:设置通道 B9 计数值为 0,写入 48:设置通道 B9 计数值为 0,写入 49:设置通道 B9 计数值		
				写入 50: 设置所有通道计数值为 0。 写入其他值无效。		
40209	208	参数恢复出厂设置	读/写	设置为 FF00,则模块所有寄存器的参数 恢复为出厂设置,完成后模块自动重启		
40210	209	重启模块	读/写	设置为 F0F0,则模块在1秒后自动重启		
40211	210	模块名称	只读	高位: 0x01 低位: 0x68		

地址 4X(PLC)	地址(PC,DCS)	数据内容	属性	数据说明
40221	220	通道 A0 每转脉冲数	读/写	通道 A0~B9 每转脉冲数(工作模式 1)
40222	221	通道 B0 每转脉冲数	读/写	无符号整数(出厂默认值为1000),根
40223	222	通道 A1 每转脉冲数	读/写	据实际输入信号的每转脉冲数来设定,
40224	223	通道 B1 每转脉冲数	读/写	设置后寄存器 40141~40160 就是对应通
40225	224	通道 A2 每转脉冲数	读/写	道转速。
40226	225	通道 B2 每转脉冲数	读/写	
40227	226	通道 A3 每转脉冲数	读/写	
40228	227	通道 B3 每转脉冲数	读/写	
40229	228	通道 A4 每转脉冲数	读/写	
40230	229	通道 B4 每转脉冲数	读/写	
40231	230	通道 A5 每转脉冲数	读/写	
40232	231	通道 B5 每转脉冲数	读/写	
40233	232	通道 A6 每转脉冲数	读/写	
40234	233	通道 B6 每转脉冲数	读/写	
40235	234	通道 A7 每转脉冲数	读/写	
40236	235	通道 B7 每转脉冲数	读/写	
40237	236	通道 A8 每转脉冲数	读/写	
40238	237	通道 B8 每转脉冲数	读/写	
40239	238	通道 A9 每转脉冲数	读/写	
40240	239	通道 B9 每转脉冲数	读/写	
40241	240	通道 A0 滤波时间	读/写	通道 A0~B9 的滤波时间(工作模式 1)
40242	241	通道 B0 滤波时间	读/写	无符号整数。每个寄存器对应一个通道
40243	242	通道 A1 滤波时间	读/写	的滤波时间。1表示滤波时间 1mS, 光电
40244	243	通道 B1 滤波时间	读/写	开关输入设置为 0, 机械开关或者继电
40245	244	通道 A2 滤波时间	读/写	器输入建议设置为 20~100。设置重启后
40246	245	通道 B2 滤波时间	读/写	生效。
40247	246	通道 A3 滤波时间	读/写	
40248	247	通道 B3 滤波时间	读/写	
40249	248	通道 A4 滤波时间	读/写	
40250	249	通道 B4 滤波时间	读/写	
40251	250	通道 A5 滤波时间	读/写	
40252	251	通道 B5 滤波时间	读/写	
40253	252	通道 A6 滤波时间	读/写	
40254	253	通道 B6 滤波时间	读/写	
40255	254	通道 A7 滤波时间	读/写	
40256	255	通道 B7 滤波时间	读/写	
40257	256	通道 A8 滤波时间	读/写	
40258	257	通道 B8 滤波时间	读/写	
40259	258	通道 A9 滤波时间	读/写	
40260	259	通道 B9 滤波时间	读/写	

表 5 Modbus Rtu 寄存器说明

शन

ShenZhen Beifu Technology Co., Ltd

通讯举例 1: 假如模块地址为 01,以 16 进制发送: 010300100002C5CE,即可取得寄存器的数据。

01	03	00	10	00	02	C5	CE
模块地址	读保持寄存器	寄存器地址高位	寄存器地址低位	寄存器数量高位	寄存器数量低位	CRC 校验低位	CRC 校验高位

假如模块回复: 010304CA90FFFFC476 即读到的数据为 0xFFFFCA90,换成 10 进制为-13680,即表明现在编码 器 3 的计数值为-13680。

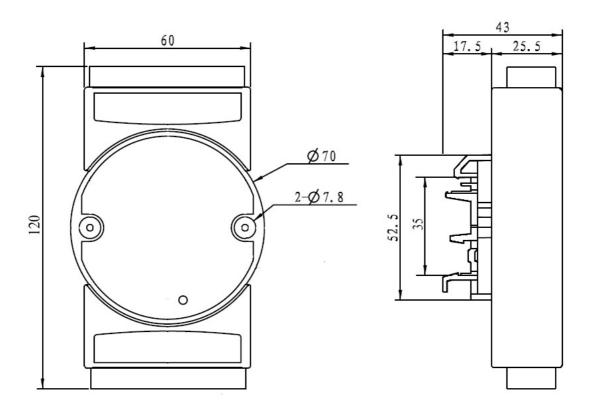
01	03	04	CA	90	FF	FF	C4	76
模块地址	读保持寄存器	数据的字节数	数据1高位	数据1低位	数据2高位	数据2低位	CRC 校验低位	CRC 校验高位

通讯举例 2: 假如模块地址为 01,以 16 进制发送: 010300200002C5C1,即可取得寄存器的数据。

01	03	00	20	00	02	C5	C1
模块地址	读保持寄存器	寄存器地址高位	寄存器地址低位	寄存器数量高位	寄存器数量低位	CRC 校验低位	CRC 校验高位

假如模块回复: 010304CA90FFFFC476 即读到的数据为 0xFFFFCA90,换成 10 进制为 4294953616,即表明现在 通道 B0 的计数值为 4294953616。

01	03	04	CA	90	FF	FF	C4	76
模块地址	读保持寄存器	数据的字节数	数据1高位	数据1低位	数据2高位	数据2低位	CRC 校验低位	CRC 校验高位


通讯举例 3: 假如模块地址为 01,以 16 进制发送: 01060043000AF819,即清零编码器 0 的计数值。

01	06	00	43	00	0A	F8	19
模块地址	写单个保持寄存器	寄存器地址高位	寄存器地址低位	数据高位	数据低位	CRC 校验低位	CRC 校验高位

假如模块回复: 01060043000AF819即表示设置成功,编码器0的计数值修改为0。

01	06	00	43	00	0A	F8	19
模块地址	写单个保持寄存器	寄存器地址高位	寄存器地址低位	数据高位	数据低位	CRC 校验低位	CRC 校验高位

外形尺寸: (单位: mm)

可以安装在标准 DIN35 导轨上

保修:

本产品自售出之日起两年内,凡用户遵守贮存、运输及使用要求,而产品质量低于技术指标的,可以返厂免 费维修。因违反操作规定和要求而造成损坏的,需交纳器件费用和维修费。

版权:

版权 © 2024 深圳市贝福科技有限公司。

如未经许可,不得复制、分发、翻译或传输本说明书的任何部分。本说明书如有修改和更新,恕不另行通知。

商标:

本说明书提及的其他商标和版权归各自的所有人所有。

版本号: V1.0 日期: 2024年02月