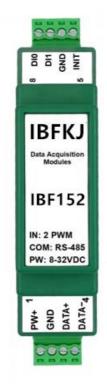


两路 PWM 占空比信号转 RS485, 脉冲输入频率计数占空比检测流量计采集


Modbus RTU模块 IBF152

产品特点:

- 测量PWM转换成标准Modbus RTU协议
- 同时可以测量PWM的频率
- 支持测量两路PWM之间的相位差
- 宽电源供电范围: 8~32VDC
- 可靠性高,编程方便,易于应用
- 标准DIN35导轨安装,方便集中布线
- 用户可编程设置模块地址、波特率等

典型应用:

- 电机PWM信号测量
- 舵机PWM信号测量
- PLC信号测量
- PWM的频率检测
- 智能工厂与工业物联网
- PWM信号远传到工控机

图1 IBF152 模块外观图

产品概述:

IBF152产品实现传感器和主机之间的信号采集,用来测量PWM信号。IBF152系列产品可应用在 RS-485总线工业自动化控制系统,自动化机床,工业机器人,三坐标定位系统,PWM测量,舵机测量等等。

产品包括信号采集,脉冲信号捕捉,信号转换和RS-485串行通信。每个串口最多可接255只 IBF152系列模块,通讯方式采用ASCII码通讯协议或MODBUS RTU通讯协议,波特率可由代码设置,能与其他厂家的控制模块挂在同一RS-485总线上,便于计算机编程。

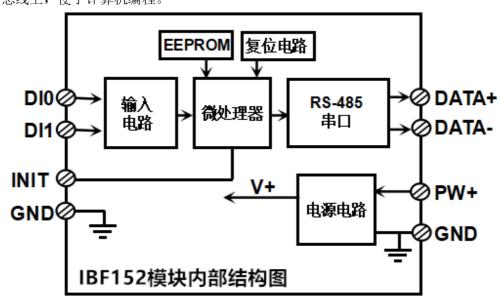


图 2 IBF152 模块内部框图

श्रन

ShenZhen Beifu Technology Co.,Ltd

IBF152系列产品是基于单片机的智能监测和控制系统,所有的用户设定的地址,波特率,数据格式,奇偶校 验状态等配置信息都储存在非易失性存储器EEPROM里。

IBF152系列产品按工业标准设计、制造,信号输入/输出之间不隔离,抗干扰能力强,可靠性高。工作温 度范围-45℃~+85℃。

功能简介:

IBF152远程I/O模块,可以用来测量2路PWM信号。

1、信号输入

2路PWM信号输入,可接干接点和湿接点,通过命令设置输入类型。

2、 通讯协议

通讯接口: 1路标准的 RS-485 通讯接口。

通讯协议:支持两种协议,命令集定义的字符协议和 MODBUS RTU 通讯协议。模块自动识别通讯协议, 能实现与多种品牌的 PLC、RTU 或计算机监控系统进行网络通讯。

数据格式: 10位。1位起始位,8位数据位,1位停止位。无校验。

通讯地址(0~255)和波特率(2400、4800、9600、19200、38400、57600、115200bps)均可设定;通讯 网络最长距离可达 1200 米, 通过双绞屏蔽电缆连接。

通讯接口高抗干扰设计,±15KV ESD 保护,通信响应时间小于 100mS。

3、抗干扰

可根据需要设置奇偶校验。模块内部有瞬态抑制二极管,可以有效抑制各种浪涌脉冲,保护模块,内部的 数字滤波,也可以很好的抑制来自电网的工频干扰。

产品选型:

选型举例: 型号: IBF152 - 485 表示输出为 RS-485 接口

IBF152通用参数:

(typical @ +25°C, Vs为24VDC)

输入类型: 2路PWM信号输入。

> 低电平: 输入 <1V 高电平: 输入 3.5~30V PWM 频率范围 0-10KHz。

输入电阻: 30KΩ

协议 RS-485 标准字符协议 和 MODBUS RTU通讯协议 诵 讯:

波特率(2400、4800、9600、19200、38400、57600、115200bps)可软件选择

地址 (0~255) 可软件选择

通讯响应时间: 100 ms 最大

工作电源: +8~32VDC 宽供电范围,内部有防反接和过压保护电路

功率消耗: 小干1W 工作温度: - 45 ~ +80°C

工作湿度: 10~90% (无凝露)

存储温度: -45~+80℃

存储湿度: 10~95%(无凝露)

外形尺寸: 106 mm x 59mm x 24mm

引脚定义:

引脚	名 称	描述	引脚	名 称	描述
1	PW+	电源正端	5	INIT	初始状态设置
2	GND	电源负端	6	GND	数字信号输出地
3	DATA+	RS-485 信号正端	7	DI1	PWM 信号第 1 路输入端
4	DATA-	RS-485 信号负端	8	DI0	PWM 信号第 0 路输入端

表1 引脚定义

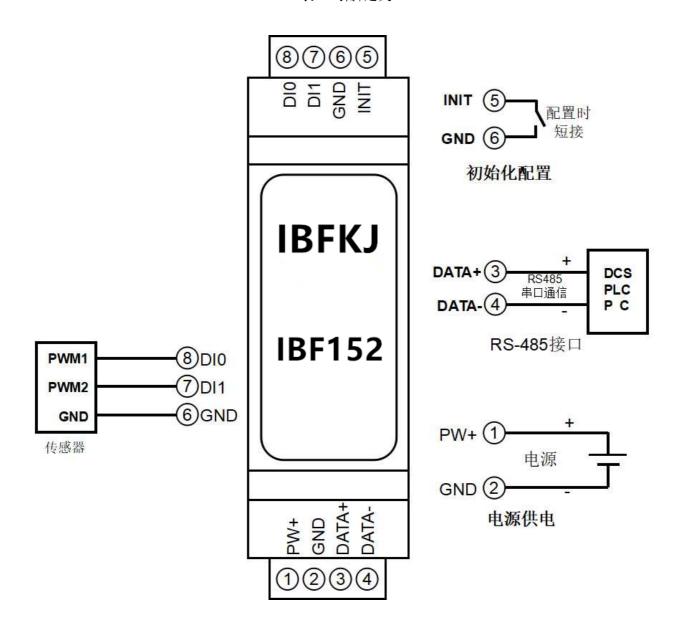


图 3 IBF152 模块接线图

注:出厂默认是关闭上拉的,如果是 NPN 传感器、干接点或者开关输入,需要打开内部上拉电阻,40082 寄存器设置为 1,或者发送字符命令\$01Q1。其他如带上拉电阻的 NPN 型传感器,PNP 型传感器,推挽式传感器,TTL 电平等等可以直接使用。如果要关闭内部上拉电阻,40082 寄存器设置为 0,或者发送字符命令\$01Q0

IBF152 字符协议命令集:

模块的出厂初始设置,如下所示:

地址代码为01

波特率 9600 bps

无校验

如果使用 RS-485 网络,必须分配一个不重复的地址代码,地址代码取值为 16 进制数在 00 和 FF 之间,由 于新模块的地址代码都是一样的,他们的地址将会和其他模块矛盾,所以当你组建系统时,你必须重新配置每一 个 IBF152 模块地址。可以在接好 IBF152 模块电源线和 RS485 通讯线后,通过配置命令来修改 IBF152 模块的地 址。波特率, 奇偶校验也需要根据用户的要求而调整。

让模块进入缺省状态的方法:

IBF152 模块都有一个特殊的标为 INIT 的管脚。将 INIT 管脚短路接到 GND 管脚后,再接通电源,此时模块 进入缺省状态。在这个状态时,模块的配置如下:

地址代码为00

波特率 9600 bps

无校验

在不确定某个模块的具体配置时,也可以将 INIT 管脚短路接到 GND 管脚,再接通电源,使模块进入缺省 状态,再对模块进行重新配置。

字符协议命令由一系列字符组成,如首码、地址ID,变量组成。

- 注意: 1、在一些情况下,许多命令用相同的命令格式。要确保你用的地址在一个命令中是正确的,假如你用错 误的地址,而这个地址代表着另一个模块,那么命令会在另一个模块生效,因此产生错误。
 - 2、必须用大写字母输入命令。

1、读取开关状态命令

明: 从模块中读回所有 DI 输入通道开关量状态。

命令格式: #AA

参数说明:# 分界符。十六进制为 23H

> 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

应答格式: > CC (cr) 命令有效。

?01(cr) 命令无效或非法操作。

参数说明:> 分界符。十六进制为 3EH

CC 代表读取到的 DI 输入开关状态, 2个数,排列顺序为 DI1,DI0,

值为 0: 输入低电平; 值为 1: 输入高电平

结束符,上位机回车键,十六进制为0DH。

应用举例: 用户命令(字符格式) #01

> 模块应答(字符格式) >01(cr)

明:模块输入开关状态是 01,排列顺序为 DII,DI0

DI0: 高电平 DI1: 低电平

2、读 DI 输入的 PWM 值命令

明:读取 DI 输入的 PWM 值,可以读所有通道,也可以读单通道。

命令格式: #AA5

- AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。
- 5 表示读DI0~DI1输入的PWM命令。排列顺序DI0.DI1。

应答格式: !AAA.AA, AAA.AA (cr)

命令格式: #AA5N

表示读通道N的PWM值。N取值: 01.对应DI0~DI1 N

应答格式:!AAA.AA(cr)

用户命令(字符格式) 应用举例1: #015

> 模块应答(字符格式) !050.00, 050.00 (cr)

说 明: 所有通道的 PWM 值为 50%。

应用举例 2: 用户命令(字符格式) #0151

> 模块应答(字符格式) !080.00(cr)

明: 通道 DI1 的 PWM 值为 80%。

3、读 DI 输入频率命令

明:读取输入的频率,可以读所有通道,也可以读单通道。

命令格式: #AA6

 $\mathbf{A}\mathbf{A}$ 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

表示读通道DI0~通道DI1输入频率命令。

应答格式:!AAAAAA.AA,AAAAAA.AA(cr)

命令格式: #AA6N 读通道N输入频率。

表示读通道N输入频率命令。N取值: 01,对应DI0~DI1

应答格式: !AAAAAA.AA (cr)

应用举例 1: 用户命令(字符格式) #016

模块应答 (字符格式) !001000.00,001000.00 (cr)

说 明: 所有通道的输入频率值为 1KHz。

应用举例 2: 用户命令(字符格式) #0160(cr)

模块应答(字符格式) !001000.00(cr)

说 明: 通道 DIO 的输入频率值为 1KHz。

4、读两路 DI 之间的相位差命令

明:读取两路 DI输入的相位差,仅在两路 DI输入频率相同时数据有效。

命令格式: #AA7

模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

表示读取两路DI输入的相位差命令。

应答格式: !AAA.AA(cr) 范围 0-360°表示相位差的角度。

应用举例: 用户命令(字符格式) #017(cr)

> 模块应答(字符格式) !090.00(cr)

说 明:两路 DI 输入的相位差为 90°。

5、设置 DI 的上拉开关

明:设置 DI 的上拉开关,出厂默认值为 0(DI 关闭上拉功能)。

命令格式: \$01OX

参数说明: Q 设置DI的上拉开关命令。

X 0: DI关闭上拉电压; 1: DI接通上拉电压。

应答格式:!01(cr) 表示设置成功

应用举例: 用户命令(字符格式) \$01Q1

模块应答(字符格式) ! 01(cr)

明:设置 DI 接通上拉电压。DI 是 NPN 输入时可以设置为接通 DI 上拉电压。

6、配置 IBF152 模块命令

明:对一个IBF152模块设置地址,波特率,奇偶校验。配置信息储存在非易失性存储器 EEPROM 里。

命令格式: %AANNTTCCFF

参数说明:% 分界符。

AA 模块地址,取值范围 00~FF(十六进制)。

NN 代表新的模块 16 进制地址,数值 NN 的范围从 00 到 FF。

TT 用 16 进制代表类型编码。 IBF152 产品必须设置为 00。

CC 用 16 进制代表波特率编码。

波特率代码	波特率
04	2400 baud
05	4800 baud
06	9600 baud
07	19200 baud
08	38400 baud
09	57600 baud
0A	115200 baud

表 2 波特率代码

用 16 进制的 8 位代表奇偶校验。 FF

00: 无校验

10: 奇校验

20: 偶校验

应答格式:!AA(cr) 命令有效。

?AA(cr) 命令无效或非法操作,或在改变波特率或校验和前,没有安装配置跳线。

分界符,表示命令有效。 参数说明:!

分界符,表示命令无效。

AA 代表输入模块地址

结束符,上位机回车键,十六进制为0DH。 (cr)

其他说明:假如你第一次配置模块,AA=00、NN等于新的地址。

假如格式错误或通讯错误或地址不存在,模块不响应。

应用举例: 用户命令 %0011000600

> 模块应答 !11(cr)

说 明: % 分界符。

> 00 表示你想配置的IBF152模块原始地址为00H。

11 表示新的模块 16 进制地址为 11H。

类型代码, IBF152产品必须设置为00。 00

表示波特率 9600 baud。 06

00 表示无校验。

7、读配置状态命令

说 明: 对指定一个 IBF152 模块读配置。

命令格式: \$AA2

参数说明:\$ 分界符。

模块地址,取值范围 00~FF(十六进制)。

表示读配置状态命令

(cr) 结束符,上位机回车键,十六进制为0DH。

应答格式: !AATTCCFF(cr) 命令有效。

命令无效或非法操作。 ?AA(cr)

参数说明:! 分界符。

> $\mathbf{A}\mathbf{A}$ 代表输入模块地址。

TT 代表类型编码。

CC 代表波特率编码。见表 2

FF 表示校验

(cr) 结束符,上位机回车键,十六进制为0DH。

其他说明:假如格式错误或通讯错误或地址不存在,模块不响应。

应用举例: 用户命令 **\$012**

> 模块应答 !01000600(cr)

说 明:! 分界符。

> 表示IBF152模块地址为01H。 01

表示输入类型代码。 00

06 表示波特率 9600 baud。

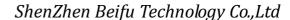
00 表示无校验。

8、设置以上字符命令设置的所有参数恢复出厂设置。

明:设置模块用以上字符命令设置的参数恢复为出厂设置,完成后模块自动重启。

命令格式: \$AA900 设置参数恢复出厂设置。

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。


(cr) 结束符,上位机回车键,十六进制为0DH。

应答格式:!AA(cr) 表示设置成功,模块会自动重启。

应用举例: 用户命令(字符格式) \$01900

> 模块应答(字符格式) ! 01(cr)

说 明:参数恢复出厂设置。

Modbus RTU 通讯协议:

模块的出厂初始设置,如下所示:

Modbus 地址为 01

波特率 9600 bps

数据格式: 10位。1位起始位,8位数据位,1位停止位。无校验。

让模块进入缺省状态的方法:

IBF152模块都有一个特殊的标为INIT的管脚。将INIT管脚短路接到GND管脚后,再接通电源,此时模块进 入缺省状态。在这个状态时,模块暂时恢复为默认的状态:地址为01,波特率为9600。在不确定某个模块的具体 配置时,用户可以查询地址和波特率的寄存器40201-40202,得到模块的实际地址和波特率,也可以跟据需要修 改地址和波特率。

支持Modbus RTU通讯协议,命令格式按照标准Modbus RTU通讯协议。

IBF152 的寄存器地址说明

支持功能码03,06和16的寄存器

地址 4X(PLC)	地址 (PC, DCS)	数据内容	属性	数据说明
40001	0	通道 DIO 输入的	只读	测量到的 PWM 值,
		PWM		16 位整数, 范围 0~10000
40002	1	通道 DII 输入的	只读	表示 PWM 占空比 0%~100%
		PWM		
40003	2	通道 DIO 输入的频率	只读	输入的 PWM 频率, 16 位无符号整数,
40004	3	通道 DI1 输入的频率	只读	单位 Hz
40005~40006	4~5	通道 DIO 输入的频率	只读	输入的 PWM 频率,32 位浮点数,
40007~40008	6~7	通道 DI1 输入的频率	只读	存储顺序为 CDAB。单位 Hz
				如果不支持浮点数,需要读整数请查看
				40003 和 40004 寄存器
40009	8	通道 DI0 的电平状态	只读	0表示低电平输入,
40010	9	通道 DI1 的电平状态	只读	1表示高电平输入
40011	10	通道之间的相位差	只读	16位整数,范围0~3600,表示相位差的
				角度0~360.0度。仅在两路DI输入频率
				相同时数据有效。
40082	81	DI 的上拉开关	读/写	0: DI关闭上拉电压; (默认值为0)
				1: DI 接通上拉电压。
40089	88	参数恢复出厂设置	读/写	设置为 FF00,则模块所有寄存器的参数
				恢复为出厂设置,完成后模块自动重启
		122.11.11.1	\d	
40201	0200	模块地址	读/写	整数,重启后生效,范围 0x0000-0x00FF
40202	0201	波特率	读/写	整数,重启后生效,范围 0x0004-0x000A
				0x0004 = 2400 bps,
				0x0005 = 4800 bps
				0x0006 = 9600 bps,
				0x0007 = 19200 bps
				0x0008 = 38400 bps, 0x0009 = 57600 bps
				0x0009 - 37000 bps $0x0000A = 115200 bps$
40203	202	奇偶校验	读/写	整数,重启后生效
TUZUJ	202	円 均4又3 <u>2</u> 2 	以/刁	登級, 重局// 全級
				1: 奇校验
				2: 偶校验
				2 · 11747X799
40211	0210	模块名称	只读	高位: 0x01 低位: 0x52
	J210	DOOL H. Id.	/ 1 100	1-4 1-1 OHOI INNEL OHOI

表 5 Modbus Rtu 寄存器说明

ShenZhen Beifu Technology Co.,Ltd

通讯举例 1: 假如模块地址为 01,以 16 进制发送: 010300100002C5CE,即可取得寄存器的数据。

01	03	00	10	00	02	C5	CE
模块地址	读保持寄存器	寄存器地址高位	寄存器地址低位	寄存器数量高位	寄存器数量低位	CRC 校验低位	CRC 校验高位

假如模块回复: 010304CA90FFFFC476 即读到的数据为 0xFFFFCA90,换成 10 进制为-13680,即表明现在 DI0 的计数值为-13680。

01	03	04	CA	90	FF	FF	C4	76
模块地址	读保持寄存器	数据的字节数	数据1高位	数据1低位	数据2高位	数据2低位	CRC 校验低位	CRC 校验高位

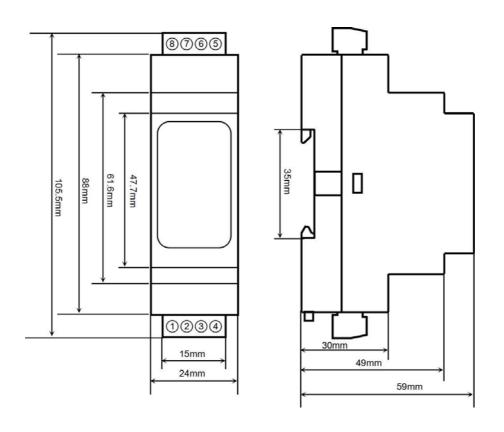
通讯举例 2: 假如模块地址为 01,以 16 进制发送: 010300200002C5C1,即可取得寄存器的数据。

01	03	00	20	00	02	C5	C1
模块地址	读保持寄存器	寄存器地址高位	寄存器地址低位	寄存器数量高位	寄存器数量低位	CRC 校验低位	CRC 校验高位

假如模块回复: 010304CA90FFFFC476 即读到的数据为 0xFFFFCA90,换成 10 进制为 4294953616,即表明现在 通道 DI0 的计数值为 4294953616。

01	03	04	CA	90	FF	FF	C4	76
模块地址	读保持寄存器	数据的字节数	数据1高位	数据1低位	数据2高位	数据2低位	CRC 校验低位	CRC 校验高位

通讯举例 3: 假如模块地址为 01,以 16 进制发送: 01060043000AF819,即清零 DI0 的计数值。


01	06	00	43	00	0A	F8	19
模块地址	写单个保持寄存器	寄存器地址高位	寄存器地址低位	数据高位	数据低位	CRC 校验低位	CRC 校验高位

假如模块回复: 01060043000AF819即表示设置成功, DI0的计数值修改为0。

01	06	00	43	00	0A	F8	19
模块地址	写单个保持寄存器	寄存器地址高位	寄存器地址低位	数据高位	数据低位	CRC 校验低位	CRC 校验高位

外形尺寸: (单位: mm)

保修:

本产品自售出之日起两年内,凡用户遵守贮存、运输及使用要求,而产品质量低于技术指标的,可以返厂免 费维修。因违反操作规定和要求而造成损坏的,需交纳器件费用和维修费。

版权:

版权 © 2024 深圳市贝福科技有限公司。

如未经许可,不得复制、分发、翻译或传输本说明书的任何部分。本说明书如有修改和更新,恕不另行通知。

商标:

本说明书提及的其他商标和版权归各自的所有人所有。

版本号: V1.0 日期: 2024年03月